
MISP Dashboard
Real-time overview of threat intelligence from
MISP instances

Threat Sharing

CIRCL / Team MISP Project

info@circl.lu

October 2, 2024



MISP ZeroMQ

1 14



MISP ZeroMQ

MISP includes a flexible publish-subscribe model to allow
real-time integration of the MISP activities:

Event publication
Attribute creation or removal
Sighting
User login

→ Operates at global level in MISP

2 14



MISP ZeroMQ

MISP ZeroMQ functionality can be used for various model of
integration or to extend MISP functionalities:

Real-time search of indicators into a SIEM1

Dashboard activities
Logging mechanisms
Continuous indexing
Custom software or scripting

1Security Information & Event Management
3 14



MISP-Dashboard: Anintroduction

4 14



MISP-Dashboard - Realtime activities and threat
intelligence

5 14



MISP-Dashboard - Features

Subscribe to multiple ZMQ MISP instances
Provides historical geolocalised information
Present an experimental Gamification of the platform
Shows when and how MISP is used
Provides real time information showing current threats and
activity

6 14



MISP-Dashboard: Architectureand development

7 14



Setting up the dashboard

1. Be sure to have a running redis server: e.g.
▶ redis-server -p 6250

2. Update your configuration in config.cfg
3. Activate your virtualenv:

▶ . ./DASHENV/bin/activate
4. Listen to the MISP feed by starting the zmq_subscriber:

▶ ./zmq_subscriber.py
5. Start the dispatcher to process received messages:

▶ ./zmq_dispatcher.py
6. Start the Flask server:

▶ ./server.py
7. Access the interface at http://localhost:8001/

8 14

http://localhost:8001/


MISP-Dashboard architecture

9 14



Writing your handler

1 # Register your handler
2 dico_action = {
3 "misp_json": handler_dispatcher,
4 "misp_json_event": handler_event,
5 "misp_json_self": handler_keepalive,
6 "misp_json_attribute": handler_attribute,
7 "misp_json_object": handler_object,
8 "misp_json_sighting": YOUR_CUSTOM_SIGHTINGS_HANDLER,
9 "misp_json_organisation": handler_log,

10 "misp_json_user": handler_user,
11 "misp_json_conversation": handler_conversation,
12 "misp_json_object_reference": handler_log,
13 }
14

10 14



1 # Implement your handler
2
3 # e.g. user handler
4 def handler_user(zmq_name, jsondata):
5 # json action performed by the user
6 action = jsondata[’action’]
7 # user json data
8 json_user = jsondata[’User’]
9 # organisation json data

10 json_org = jsondata[’Organisation’]
11 # organisation name
12 org = json_org[’name’]
13 # only consider user login
14 if action == ’login’:
15 timestamp = time.time()
16 # users_helper is a class to interact with the DB
17 users_helper.add_user_login(timestamp, org)
18

11 14



Recent changes in the misp-dashboard

MISP authentication can now be used in the misp-dashboard
Improved TLS/SSL support in the default misp-dashboard
Self-test tool to debug and test ZMQ connectivity

12 14



Future development

Optimizing contribution scoring and model to
encourage sharing and contributions enrichment

Increasing geolocation coverage

Global filtering capabilities
- Geolocation: Showing wanted attribute or only on specific

region
- Trendings: Showing only specified taxonomies

Tighter integration with MISP
- Present in MISP by default
- ACL enabled version

13 14



Conclusion

MISP-Dashboard can provides realtime information to support
security teams, CSIRTs or SOC showing current threats and
activity by providing:

Historical geolocalised information
Geospatial information from specific regions
The most active events, categories, tags, attributes, ...

It also propose a prototype of gamification of the platform
providing incentive to share and contribute to the community

14 / 14


	MISP ZeroMQ
	MISP-Dashboard: An introduction
	MISP-Dashboard: Architecture and development

